Общие сведения о бурении нефтяных и газовых скважин. Бурение нефтяных скважин в азербайджане Выдержки из истории бурения Древнего Китая

Каждая страна пытается всячески подчеркнуть свой вклад в общемировую копилку знаний. Так как многие решения «купить» принимаются на эмоциональном уровне, вклад в мировую науку и инженерное дело - вопрос не сколько престижа отдельных специалистов, сколько поддержания стоимости бренда страны в целом.

Поэтому и борьба за первенство в нефтегазовой отрасли идет не только за текущую рыночную долю или будущую добычу, но и за прошлые изобретения. Есть сотни примеров, когда одни и те же уравнения или подходы называются по-разному в разных языках. Кто же был первым? И насколько это вообще важно?

Первая нефтяная скважина

Нефть добывалась с незапамятных времен с поверхности в местах естественного просачивания. Известны упоминания о добыче нефти из построенных колодцев глубиной до 50 метров (в районе Баку с 1594 года).

Считается, что первую промышленную эксплуатационную скважину построил в 1858 году Эдвин Дрейк. После выхода на пенсию железнодорожник Дрейк мог путешествовать по стране бесплатно. Это и случайная встреча в отеле дало Дрейку работу геологоразведчика, оклад в $1000 в год и несколько акций компании Seneca Oil.

Строительство глубоких скважин в Пенсильвании до Дрейка считалось неразрешимой задачей из-за быстрого обрушения грунта. Промышленными новациями Дрейка стало применение парового двигателя вместо ручного привода и обсаживание ствола скважины наращиваемой чугунной трубой в процессе углубления ствола. Именно так 2500 лет назад китайцы бурили скважины глубиной до 500 метров для добычи рассола. Как повествуют китайские летописи, иногда в обсаженной бамбуком скважину прорывался горючий газ или нефть. Неудивительно, что единственным буровиком, согласившимся на авантюру Дрейка, был Вильям Смит - специалист по бурению скважин на соль.

Штанговый насос на эксплуатационной скважине. Насос приводится в движение паровой машине, которая топится дровами. Tarr Farm, Долина Нефтяной ручей (Oil Creek Valley), Пенсильвания, 1868. Фотография из музея Скважины Дрейка.

Между тем первая разведочная скважина, находится рядом с г.Баку. Она была построена под руководством инженера Василия Семенова, на ту же глубину - 21 метр. Из докладной записки наместника на Кавказе князя Воронцова от 14 июля 1848 г.: «… Директор Бакинских и Ширванских минеральных промыслов доносил, что пробурена на Биби-Эйбате буровая скважина, в которой найдена нефть».

Паровую же машину для бурения в России впервые применили лишь в 1859 году близ г. Подольска. Первая эксплуатационная скважина была построена в России на Кубани в 1864 году. Отставание в применении механизированного бурения определило и последующее отставание в применении других технологий добычи нефти. В них до поры просто не видели необходимости.

Пласт на разрыв

Ранние технологии бурения приводили к загрязнению призабойной зоны фильтратом бурового раствора на несколько метров вглубь пласта. Кроме того, скважины, пробуренные ударно канатным способом, не полностью вскрывали весь пласт, т.к. иначе обсадная колонна Дрейка перекрывала бы продуктивную зону. Дебит скважины из-за этого мог быть в десятки раз ниже возможного.

В 1865 году отставной полковник Э. Робертс получает патент № 59,936 на «торпедирование» призабойной зоны скважины. Услуга стоимостью $100-200 и роялти в 1/15 будущей добычи была столь популярна, что на рынке появилось множество шабашников («moonlighters»), нарушающих патент и технологию обращения с оружейным порохом и нитроглицерином. Робертсу пришлось нанимать детективов агентства Пинкертона и потратить в общей сложности $250 000 на судебные издержки, организовав крупнейшую в истории США защиту патента. Метод прекратил применяться лишь 5 мая 1990 года когда закончились складские запасы снятого с производства нитроглицерина.

Следующей технологией стало перфорирование обсадной трубы с помощью многозарядного перфоратора, что позволило спускать обсадную колонну ниже продуктивной зоны и вскрывать при этом весь пласт. C 1930 по 1956 год Ira McCullough получает множество патентов на перфораторы. Однако пласт перфорируется недостаточно глубоко, и добыча остается в несколько раз ниже потенциальной.

Для решения этой проблемы в 1947 году Floyd Farris и Joseph B. Clark (Stanolind Oil and Gas Corporation) нанимают компанию Halliburton для создания в пласте искусственной трещины – гидроразрыва пласта (ГРП), проходящей сквозь повреждение и заполненной более проводящим расклинивающим материалом - пропантом. Для этого нужно было поднять давление жидкости на забое выше горного давления и держать трещину открытой несколько часов, пока пропант закачиваемый с жидкостью займет свое место и насосы можно будет выключать.

Полевой эксперимент по гидроразрыву был проведен в 1947 году на газовом месторождении в Канзасе. Выкладки по газовому месторождению Hugoton, Канзас (глубины 730 метров) показывали необходимое давление 50-100 атм на устье (130-180 атм на забое) и объемы закачки несколько кубометров геля на базе дизельного топлива, смешанного с речным песком. Процесс был запатентован нефтяной компаний и тут же переуступлен по лицензии Halliburton. Первая промышленная операция 17 марта 1949 года в 12 милях от г. Данкэн, штат Оклахома. В тот же день вторая операция была проведена в соседнем Техасе.

К 1980 году на 500 000 скважин США было проведено более 150 000 операций ГРП. Повторные ГРП были проведены на 35% из них. Первая операция по созданию трещины третий раз в той же скважине (tri-frac) проведено в 1955 году. Максимальное количество операций ГРП было отмечено в 1955 г. - примерно 54 000 ГРП в год.

В СССР ГРП начали применять с 1952 г. Задолго до изобретения современных компьютеров, в 1955 году советские ученые Христианович и Желтов разработали первую двухмерную модель - KGD (Kristianovitch-Geertsma-de Klerk). В 1961 вторую 2D модель - PKN разработали Perkins и Kern, с модификаций Nordgren (1971). По прошествии полувека на рынке конкурируют десятки программ для псевдо-3D дизайна и оптимизации ГРП на базе модели PKN, подавляющее большинство создается и дорабатывается в США и Канаде. Более точное, полностью трехмерное одновременное моделирование геомеханики, гидравлики и процесса переноса требует вычислений длиной в несколько месяцев и не используется на практике.

Основной вектор развития моделей – более точный и быстрый прогноз многостадийных операций на нескольких горизонтальных скважинах одновременно (zip fracs). Также интересно описание интерференции трещин (stress shadowing) и транспорт пропанта, а также комбинирования вспомогательных технологий, включая закачку трассёров, использование оптоволокна, и микросейсмический мониторинг. В более далекой перспективе – потребуется переизобрести ранее протестированное использование пен на базе CO2 и азота.

Пик применения ГРП в СССР пришелся на 1959 г. С начала 1970-х и до конца 1980-х ГРП в СССР практически не проводилось, в связи с вводом в разработку крупных нефтяных месторождений Западной Сибири. Возрождение практики применения ГРП в России началось уже после падения цены на нефть, в конце 1980-х. За 1988-1995 гг. в Западной Сибири было произведено более 1,6 тыс. операций ГРП.

Во процессе раздела НК ЮКОС и передачи его активов НК Роснефть, ряд высокопоставленных чиновников называл ГРП «варварским» и «хищническим» методом добычи, что, однако, не помешало увеличить количество и тоннаж операций на тех же месторождениях в России с 5 000 в 2006 году до примерно 15 000 в 2016 году.

Из опыта разработки месторождений США в России может быть потенциал реперфорации и повторных ГРП, как это практикуется через 5-10 лет после первичной стимуляции скважины. За счет геомеханического моделирования возможно предсказать насколько новая трещина отклонится от старой, а гидродинамическая модель покажет зоны, которые необходимо доохватить заводнением. И если крылья новой трещины подцепят слабодренированные пропластки, резко сократится обводненность и содержание газа в добываемой жидкости. Это будет сигналом, что повторная операция не только увеличила темп отбора, но и извлекаемые запасы этого участка месторождения. Стоит ли говорить, что «варварский метод», без которого редко обходится новая скважина в России, уже привел к перевороту рынка, обрушению цены и началу экспорта американской нефти. С учетом высокой обводненности и низкого дебита по нефти в скважинах, пробуренных в 2012 году и ранее, технические риски большинства повторных ГРП невысоки – терять особо нечего.

Наращивая объемы

Благодаря тому, что нефть часто легче воды, давление в пласте способно доставить нефть на поверхность фонтаном. Но при этом дебит нефти получается в пять раз ниже максимально возможного, и энергии пласта хватает ненадолго. Для традиционных коллекторов – несколько месяцев, для сланцевых месторождений – до нескольких лет.

И опять промышленным новатором выступил Дрейк, взяв с кухни ручную помпу. Создав с поверхности разряжение в одну атмосферу, он увеличил добычу с 10 до 25 баррелей в день, оставив весь городок Titusville без оборотных бочек под виски. Этот пример хорошо показывает опасность сравнения только данных по дебиту. Без данных по давлению – финансовые аналитики могут легко ошибиться в несколько раз, сравнивая фонтанирующую через штуцер скважину со скважиной, работающей в пустой забой (AOF).

Насос на поверхности может создать разряжение и прибавить атмосферное давление к энергии самого пласта. Создать же большее разряжение можно насосом в скважине, но как привести его в движение? Первое решение – механическая передача с поверхности, но тогда нужна длинная штанга, ход которой и ограничит максимальный дебит. В 1865 году, только когда перестали фонтанировать скважины из первой волны промышленного бурения, американцы начали массовое использование погружных плунжерных насосов, с поршнем, приводимым в действие двигателем с поверхности через балансир от бурового станка и деревянную штангу (см. рисунок 1). В России новация нашла свой рынок только в 1874 году.

А что если скважины становятся все глубже и глубже и требуется создать давление в несколько сотен атмосфер? И буровики научились бурить наклонные скважины под нужным углом?

Тогда разумно поместить и насос, и двигатель в саму скважину. Для этого требуется сверхмалый размер устройства и большая мощность на единицу объема. Электрический двигатель был единственным на тот момент вариантом. В 1911 году Армаис Арутюнов открывает в Екатеринославле свою компанию и создает высокооборотный компактный электрический мотор, который может работать полностью погруженным в воду. А в 1916 году, доводит до ума работающую на одном валу пару: мотор и центробежный насос. При этом мощный мотор располагается ниже насоса и охлаждается набегающим потоком жидкости.

В 1919 году Арутюнов эмигрируют сначала в Берлин, затем, в 1923 году в Лос-Анджелес, где пытался убедить внедрить свою разработку. Везде следовал отказ был со словами, что устройство противоречит известным законам электричества. Примечательно, что за 50 лет до этого в Австрии профессор Грацкого университета Яков Пешль прочитал лекцию о неосуществимости использования переменного тока в электродвигателях одному из своих студентов. Студента звали Никола Тесла, а имя профессора Пешля навсегда останется в истории инженерного дела.

В 1928 году Арутюнов переезжает в Оклахому и с партнером Frank Phillips (директор Phillips Petroleum Co.) открывает свою компанию. В 1930 компания была переименована в REDA pump Co. (от Russian Electrical Dynamo of Arutunoff). В ней нашли работу сотни уволенных в Великую депрессию американских рабочих. К концу 30х годов REDA имела более 90 патентов, а Арутюнов ни в чем себе не отказывал до конца жизни. Его портрет висит в Зале Славы штата Оклахома.

Марка электроцентробежных насосов (ЭЦН) REDA была единственной на рынке США до 1957 года, и спустя столетие после создания прототипа все еще входит в продуктовую линейку Schlumberger. Примечательно то, что месторождение North Burbank Unit, на котором разбогател Frank Phillips, до сих пор дает нефть при помощи закачки CO2 (см. статью НГВ «Парниковый эффект в добыче нефти» в номере #13/14 за 2017 г.) и напора, создаваемого ЭЦН REDA.

Первый ЭЦН в СССР был спущен в 1943 г., когда из США по ленд-лизу были получены 53 насоса REDA. Отечественный аналог спущен 20 марта 1951 г. в скважину № 18/11 Грознефти. Западносибирскую провинцию стали осваивать гораздо позже месторождений Оклахомы и Техаса, поэтому дебиты остаются выше, чем на в США и требуют мощных насосов. До сих пор в России больше 80% нефти добываются ЭЦН. Ими оснащено более 80 000 скважин.

Сланцевая революция резко повысила дебиты скважин США, а дешевая нефть резко снизила зарплаты в России, так что для производителей ЭЦН России: Борец (ООО «Лысьванефтемаш»), Новомет (одноименная компания, г. Пермь), Алмаз (г. Радужный, ХМАО) и Алнас (ГК Римера – часть Холдинга ЧТПЗ) открывается уникальное окно возможностей. Но только если они смогут конкурировать шириной диапазона дебита при высоком газовом факторе с REDA (Schlumberger) и Centrilift (Baker Hughes), и ценой с китайскими производителями. Одним из барьеров входа будет, как не странно, отсутствие опыта работы по установке и обслуживанию ЭЦН у американцев. Для них эра массового применения ЭЦН закончилась в 1970х годах, но начинается снова, причем в тех же самых районах нефтедобычи, что и полвека назад.

Новые технологии и пилотные образцы часто появляются за пределами США, но удивительно системно штаты становятся местом их массового применения, доработки и превращения в массовый экспортных продукт. Изобретатели-счастливчики возможно и делает один уникальный прорыв, но истинные перевороты в индустрии делают люди, систематически перепробовавшие сотни и тысячи подходов и нашедшие верную комбинацию известных ранее технологий. Поэтому не сильно важно где технология родилась, важно кто первым догадался скрестить ее с несколькими уже известными и довести продукт для массового использования.

Американцы связывают рождение нефтяной индустрии с Дрейком не потому, что он был выдающимся изобретателем или хотя бы успешным бизнесменом. У него не было деловой хватки и метод бурения остался незапатентованным. Проигравшись на бирже в 1863 году, он был вынужден в старости жить на специальную пенсию штата $1,500/год (немыслимая по тем временам щедрость), в полтора раза выше своего стартового оклада от Seneca Oil.

Дрейк стал известен потому, что пошел против мнения специалистов по бурению водяных скважин, проскакал 90 миль в поисках буровика-соледобытчика, который возьмется за безумный заказ. Кроме того, он совместил известный способ бурения с известной технологией откачки воды. Добыча увеличилась в разы и стала коммерческой.

Пользователю необходимо проводить оптимизацию для десятка сценариев, а не биться с неудобным в каждодневной работе инструментом и гадать над непонятными параметрами и исходными данными. Альтернатива новым методам есть – это старый добрый принцип, известный на всех языках - «мы всегда так делали». Поэтому чтобы не отстать, стоит работать на будущее, а не цепляться за великое прошлое.

Вода – источник жизни, без которого немыслима жизнь. На протяжении всей истории люди разбивали поселения вблизи водоемов и источников. Независимо от количества воды, имеющейся в регионе проживания людей, источники обожествлялись и часто наделялись магической силой. Действительно, подземная вода или вода, бьющая из источника более полезна, способна не только утолять жажду, но и наделять энергией. Уже в наше время доказано, что вода может менять свою энергоинформационную структуру, от чего будут зависеть её целебные свойства. Чем глубже добыта вода, тем она полезнее. В древности также было замечено это свойство, поэтому на поля доставлялась вода по специальной системе водоснабжения и орошения, в результате были большие урожаи.

Бурение скважин в добиблейские времена и в Египте

Первое упоминание о водоносных скважинах имеется в Библии. В «Исходе» глава 17:1-6 говорится о том, что во время перехода народа Израиля из Египта Моисей обращался к Богу, чтобы тот дал воду его народу в пустыне. Моисей ударил жезлом по скале в указанном Господом месте, и забил источник. В данном случае артезианские воды находились близко к поверхности.

Известны скважины для воды в Египте, по найденным артефактам удалось определить их возраст – он составил не менее 5000 лет. Некоторые из скважин даже имеют надпись с датой постройки. В Египте для бурения использовали грубые каменные долота, которые крепились к деревянному шесту.

Несколько позже в древнем Иерусалиме скважины стали неотъемлемой частью городского быта. В городе имелся источник Гихон за укрепленными стенами. Вода собиралась в бассейн, вокруг которого также возвышались мощные стены. Также в Израиле в городе Давида известность получила Шахта Уорена, по некоторым мнениям относящаяся к водопроводной системе. К Гихону вело несколько шахт. Считается, что город существовал еще 12 веке до н.э., тогда же были проведены работы по бурению источника.

Источники воды в Античном мире

В Античном мире также бурили источники. Скважины найдены в районе города Сиракузы, который находился на территории Древне Сицилии. Причем источники в Древней Греции были пробиты и на территории поместий богатых горожан. Правда, эти скважины были неглубокие и не превышали 3 м, то есть с её помощью поднимали грунтовые воды, а скважину бурили шнековым способом. Шнек – это вертикальный винтовой транспортер. В наше время тоже применяется для бурения неглубоких скважин.

Напомним, что в Сиракузах, в свое время жил Архимед, который создал специальное устройство для поднятия морской воды к акведукам, по конструкции напоминающее современный насос. Но был сделано открытие, которое позволяет утверждать, что скважины шнековым способом в Греции бурили еще за 100 лет до рождения Архимеда. Благодаря таким изобретениям в городах была сделан водопровод и канализация. В Риме до сих пор находится в рабочем состоянии канал Клоака Максима, который был построен в 5 веке до н.э. как канализационный. Сегодня он используется для ливневой канализации.

Выдержки из истории бурения Древнего Китая

Наибольшего совершенства достигли технологии в Древнем Китае. В 7 веке до н.э., по упоминаниям Конфуция, бурились скважины более 512 м. В древних манускриптах полностью описана технология бурения. Для разрушения породы применялись зубила, изготовленные из металла и прикрепленные к длинным бамбуковым шестам. Бур поднимался на высоту с помощью канатов и сбрасывался в скважину. Измельченную породу смешивали с водой и вычерпывали из скважины. Такой способ был придуман китайским инженером Ли Пеном. В наше время этот метод также применяется в усовершенствованном виде и называется ударно-канатным способом бурении скважин.

Первые скважины в Европе

Первая известная европейская скважина датирована 1125 годом. Её глубина составляла 121 м. Она расположена в провинции Па-де-Кайес (Франция). В 1818 году во Франции организован специальный фонд бурения скважин из-за массового спроса. В 1833 году была пробурена первая скважина в Париже, в 1839 году ее глубина достигала уже 493 м, в 1841 году – 549 м. На этом уровне под Парижем находится водоносный пласт, а из скважины забил фонтан с высотой 34 м.

Первые скважины в России

В России скважины бурились, прежде всего, для добычи соляного раствора. Нужно сказать, что водозаборные скважины использовались по прямому назначению относительно недолго. Метод бурения начали применять для разведки полезных ископаемых.

Первые скважины для водопотребления были пробурены в 15 веке в Кремле, в 1654 году на территории Троицко-Сергиевой лавры и в Белозере. Особенно актуальны были скважины для добычи соли, такие соляные варницы упоминались в 1136 году в грамоте князя Святослава.

В России к 17 веку имелся даже собственный рукописный учебник по бурению «Роспись как зачать делать новую трубу на новом месте». В этом своде правил был собран многовековой опыт российских бурильщиков. В сборнике давались рекомендации по отбору проб грунта, рассолов и способах устранения аварий. Также имеются сведения о правилах изготовления буров и технологии бурения. Приведены 128 термины, где нет ни одного заимствованного. В среднем практиковались скважины 89 саженей (около 88 метров), что соответствует песчаному горизонту.
Можно отметить и имена легендарных русских инженеров-бурильщиков как Кирилл Арнольд, Вениамин Каяканогов, Георгий Тимофеев. Со временем для бурения стали применяться паровые машины, двигатели. Уже в 19 веке в России пробурено большое количество скважин.

Современное бурение скважин

Можно считать с началом 19 века началась современная история бурения водоносных скважин. Технологии развивались, существенно росли и возможности бурильщиков, а также снижалась стоимость бурения.
В начале 20 века буровые установки представляли собой сугубо механические системы: колонну, дифференциально-винтовые, цепные или рычажные системы для осевого усилия. Со временем установки комплектовались гидравлической подачей, а также системой, позволявшей достигнуть плавного вращения. Буровые установки комплектовались дизель-гидроэлектрическим приводом, а впоследствии и электронным управлением.

История бурения водозаборных скважин связана со следующими изобретениями:

  • с изобретением шарошечного долота в США (1909);
  • с созданием буровых коронок с армированием резцов (после 1920);
  • с использованием мелкоалмазных коронок и долота (после 1940);

Нужно сказать, что совершенствовались только технологии, сам принцип бурения с древности практически не менялся. Кроме того, в настоящее время бурение скважин на воду постепенно ушло на второй план, бурение применяется для добычи полезных ископаемых, а средняя глубина скважины 2-3 км. В истории России имеется случай сверхглубокого бурения, ее глубина в 1992 году была свыше 12 км.

С совершенствованием технологии также изменялся характер комплектации скважин. Для защиты от промерзания и разрушения грунтовыми водами отверстие комплектуется водонепроницаемыми кессонами, образующими водонепроницаемые камеры. Кессоны в основном применяются для водозаборных скважин. Размеры кессонов: диаметр – 1 метр, высота – 2 метра. В кессонах обычно размещается оборудование водозаборной скважины, если необходимо сэкономить площадь в доме.

Во времена Древнего Рима вода шла по системе самотеком, 13 веке такой водопровод появился в Париже и Лондоне. Даже в Новгороде был найден самотечный водопровод из дерева. В Грузии вода подавалась по гончарным трубам. Этот водопровод построен в 13 веке. В 1630 году в Кремле построили первую скважину с водонапорной башней на свинцовых трубах – установки, которые используются и по сей день.

Сейчас стенки скважины могут быть закреплены целым рядом материалов доступных в момент бурения – чугунными, железобетонными, асбестоцементными, железобетонными, оцинкованными трубами. Пластиковые трубы применялись еще в 30х годах прошлого столетия. Исползовались полиэтиленовые и поливинилхлоридные трубы. Эти виды труд хорошо переносят высокие и низкие температуры. Современные трубы совмещают свойства полиэтилена и поливинилхлорида. Срок службы современных труб не менее 50 лет. Эти трубы «доставляют» воду буквально в первозданном состоянии, не изменяя химический состав. Неотъемлемой частью скважины будет и водозаборный насос. Насосы различаются по сферам применения, имеются более дорогие и менее дорогие версии, которые помогут «попасть» в нужный бюджет. В целом профессиональная компания предложит вам несколько вариантов комплектации насосов, которые будут отличаться по параметрам и стоимости.

Стоит ли бурить скважину?

Многие задаются вопросом, стоит ли бурить скважину? Безусловно, стоит. Вы обеспечите себя несравненно чистой водой. Скважины делятся на несколько типов: скважины для поднятия грунтовых вод, скважины для песочного горизонта, скважины водоносного горизонта. Самую полезную и чистую воду дадут вам последние, но даже средняя скважина 90 м может вам гарантировать хорошую и свежую воду. Какое отличие ее от грунтовых вод? Вода многократно проходит через толщу песка и очищается. Даже колодец гарантирует вам удовольствие от свежей воды, которая обладает большей энергией восстановления сил.

Самым будет сложным пробурить артезианскую скважину. Такая вода в большинстве случаев не используется для бытовых нужд. Обычно из таких скважин добывается вода с целью ее последующей продажи. Скважина бурится до известняковых пород, вода из нее бьет фонтаном. Он образуется потому, что в толще известняка вода находится под гидравлическим давлением. На сегодняшний день, несмотря на дороговизну, артезианские скважины стали самым популярным способом автономного водоснабжения. Подземные воды не требуют очистки и обеззараживания.

Основное преимущество такой скважины – это её несравненно высокая водоотдача. В среднем скважина без ремонта прослужит вам не менее 30 лет, но это при условии, что её будут бурить профессионалы.

Напомним, что артезианская вода доступна только в артезианских бассейнах, о географическом расположении которых можно уточнить в любом геодезическом бюро. При необходимости бурения, старайтесь выбирать фирму, имеющую большой и собственные мобильные буровые установки, тогда вы будете застрахованы от неприятностей эксплуатации.

Каков бы ни был бюджет автономного водоснабжения, обязательно рассмотрите разные варианты бурения. Со скважиной вы будете всегда обеспечены чистой родниковой водой.

Автор Айдын задал вопрос в разделе Производственные предприятия

Где и когда была пробурена первая в мире нефтяная скважина? и получил лучший ответ

Ответ от Пользователь удален[гуру]
Биби-Айбайское месторождение вблизи Баку 1846 г.

Ответ от Margo Margo [гуру]
первая в мире нефтяная скважина была пробурена на берегу Каспийского моря в районе Биои-Эйбата в 1846 году.


Ответ от Женечка Сартина [гуру]
Люди добывали нефть с глубокой древности. Но принято считать рождением отрасли, стартом промышленной добычи факт бурения первой в мире скважины. Общепринята дата - 27.08.1859. Американцем Эдвином Дрейком в тот день была получена нефть из якобы первой в США нефтяной скважины. Однако был другой американец, который опередил Дрейка.
Впервые промышленную американскую нефть (5 т в сутки) из буровой скважины глуб. 15 м получил инженер Уильямс в 1857 в Эннискиллене. Но и он не был первым.
Первое в мире бурение на нефть с положительным результатом проведено в Российской империи. В 1846 в Баку на Биби-Эйбате пробурена скважина глубиной 21 м для разведки нефти. В докладной записке от 14 июля 1848 наместник на Кавказе князь М. С. Воронцов писал: «Я разрешил провести новые разведки на нефть в Бакинском уезде на берегу Каспийского моря в урочище Бей-Бат посредством земляных буров. Директор Бакинских и Ширванских минеральных промыслов доносил, что пробурена на Биби-Эйбате буровая скважина, в которой найдена нефть». Предложение провести буровые работы в развитие идеи горного инженера Н. И. Воскобойникова было сделано членом Главного управления Закавказским краем ст. советником В. Н. Семеновым. Приоритет России неоспорим.
Можно говорить, что именно с открытием в 1859 большого артезианского источника в Веньнано /Пенсильвания/ начался коммерческий нефтяной промысел в современном понимании этого процесса. Но при этом не надо забывать, что до 1860-х Россия давала половину мировой нефти. Одно то, что в России по “советам” иностранных специалистов (Абих, Баерн, Траутшольд) официально запретили бурение нефтяных скважин вплоть до 1869 (”доброжелатели” убедили власти в непригодности и бесперспективности бурения для добычи нефти) , говорит о многом. Запрет не помешал в 1866 А. Н. Новосильцеву пробурить скважину № 1 и получить из нее первый российский нефтяной фонтан.
И все-таки самой первой в мире была пробурена российская скважина на Биби-Эйбате в 1846.


Ответ от Котик Мррр [новичек]
Первая в мире скважина была пробурена в Азербайджане в Каспийском море Биби-Эйбат.

Родина русской нефти.

До 1861 года нефтяной промысел на Кубани был ограничен «исключительным правом войска на эксплуатацию нефтяных колодцев». Но всё изменилось во второй половине ХIХ века. Первым кто вложил свои деньги в добычу нефти стал отставной полковник А. Н. Новосильцев.

Местом для разработки нефтяных месторождений Новосильцев выбирает Темрюкский уезд. С 1864 года он вместе с поданными Соединённых штатов Америки Шандаром и Грином Клеем начинает разведочные работы на Таманском полуострове у станиц Новотитаровской и Вышестеблиевской, а так же в долине реки Кудако и Псиф. Эти американские инженеры были людьми самого Рокфеллера.

В первом случае два года работ результата не дали, а на них было израсходовано более 200 тысяч рублей. Сумма даже по тем временам не маленькая, причём в своих письмах друзьям Ардалион Николаевич жалуется на то, что американцы плохо работают всячески затягивают процесс, жалуются на то, что условия в России неподходящие.

Это черт знает что, - горестно восклицал горный инженер М. М. Юшкин, - эти янки только и знают, как умышленно тормозить разведку залежей, скрывать результаты своих геологических изысканий, извращать данные лабораторных анализов. Видит бог - это не что иное, как сознательный обман русского общественного мнения...

Об этом же говорил в своих статьях и другой русский горный инженер Гилев: американцы были заинтересованы только в одном - убедить русских в бесплодности новых геологических изысканий на Кубани.

Новосильцев расторгает контракт с американцами и приглашает на работу русских специалистов, делая ставку на долину рек Псиф, Кудако и Псебепс.

3 февраля 1866 года стало замечательным днем. Уполномоченный Новосильцева Владимир Петерс сообщил командиру Адагумского полка: «Уведомляю, что в последнюю поездку мою в урочище Кудако после неимоверных усилий 3-го февраля пробит, был камень, и с необыкновенным шумом открылась струя чистой нефти, дающая без помощи локомобиля и пособий рабочих, посредством одних труб от 1500 до 2000 ведер каждые 24 часа. Довожу об этом до сведения Вашего, для донесения кому следует».

Это был первый в России нефтяной фонтан. Он привлек внимание отечественной прессы, которая с большими подробностями описывала «чудо природы». Газета «Русский инвалид» (№ 59) опубликовала заметку об этом событии. А по дипломатическим каналам поступали запросы о постановке нефтяного дела на Кубани.

В наше время скважина уже не действует, но на её месте в честь тех событий построена стилизованная вышка, в середине которой установлен памятник.
Всё было бы хорошо, если не полное невнимание к столь историческому месту как местных властей, так и наших нефтяных гигантов, обязанных А. Н. Новосильцеву началом развития нефтяной отрасли в России.
Это место даже не включено в перечень достопримечательностей края, не говоря уже о том, чтобы поддержать идею создания мемориально-исторического комплекса.

Вышка выглядит ещё относительно достойно, а вот памятник с "пламенными" надписями на табличках разрушается и буквально рассыпается на глазах.

Использована информация с сайта:
http://kudako.ru/

Общие сведения о бурении нефтяных и газовых скважин

1.1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Рис. 1. Элементы конструкции скважины

Скважиной называется цилиндрическая горная выработка, сооружаемая без доступа в нее человека и имеющая диаметр во много раз меньше ее длины (Рис. 1).

Основные элементы буровой скважины:

Устье скважины (1) – пересечение трассы скважины с дневной поверхностью

Забой скважины (2) – дно буровой скважины, перемещающееся в результате воздействия породоразрушающего инструмента на породу

Стенки скважины (3) – боковые поверхности буровой скважины

Ось скважины (6) - воображаемая линия, соединяющая центры поперечных сечений буровой скважины

*Ствол скважины (5) – пространство в недрах, занимаемое буровой скважиной.

Обсадные колонны (4) – колонны соединенных между собой обсадных труб. Если стенки скважины сложены из устойчивых пород, то в скважину обсадные колонны не спускают

Скважины углубляют, разрушая породу по всей площади забоя (сплошным забоем, рис. 2 а) или по его периферийной части (кольцевым забоем рис. 2 б). В последнем случае в центре скважины остается колонка породы – керн, которую периодически поднимают на поверхность для непосредственного изучения.

Диаметр скважин, как правило, уменьшается от устья к забою ступенчато на определенных интервалах. Начальный диаметр нефтяных и газовых скважин обычно не превышает 900 мм, а конечный редко бывает меньше 165 мм. Глубины нефтяных и газовых скважин изменяются в пределах нескольких тысяч метров.

По пространственному расположению в земной коре буровые скважины подразделяются (рис. 3):

1. Вертикальнвые;

2. Наклонные;

3. Прямолинейноискривленные;

4. Искривленные;

5. Прямолинейноискривленные (с горизонтальным участком);

Рис. 3. Пространственное расположение скважин



Сложноискривленные.

Нефтяные и газовые скважины бурят на суше и на море при помощи буровых установок. В последнем случае буровые установки монтируются на эстакадах, плавучих буровых платформах или судах (рис. 4).

Рис. 4. Виды буровых скважин



В нефтегазовой отрасли бурят скважины следующего назначения:

1. Эксплуатационные – для добычи нефти , газа и газового конденсата.

2. Нагнетательные – для закачки в продуктивные горизонты воды (реже воздуха, газа ) с целью поддержания пластового давления и продления фонтанного периода разработки месторождений, увеличения дебита эксплуатационных скважин, снабженных насосами и воздушными подъемниками.

3. Разведочные – для выявления продуктивных горизонтов, оконтуривания, испытания и оценки их промышленного значения.

4. Специальные - опорные, параметрические, оценочные, контрольные – для изучения геологического строения малоизвестного района, определения изменения коллекторских свойств продуктивных пластов, наблюдения за пластовым давлением и фронтом движения водонефтяного контакта, степени выработки отдельных участков пласта, термического воздействия на пласт, обеспечения внутрипластового горения, газификации нефтей , сброса сточных вод в глубокозалегающие поглощающие пласты и др.

5. Структурно-поисковые – для уточнения положения перспективных нефте -газоносных структур по повторяющим их очертания верхним маркирующим (определяющим) горизонтам, по данным бурения мелких, менее дорогих скважин небольшого диаметра.

Сегодня нефтяные и газовые скважины представляют собой капитальные дорогостоящие сооружения, служащие много десятилетий. Это достигается соединением продуктивного пласта с дневной поверхностью герметичным, прочным и долговечным каналом. Однако пробуренный ствол скважины еще не представляет собой такого канала, вследствие неустойчивости горных пород, наличия пластов, насыщенных различными флюидами (вода, нефть , газ и их смеси), которые находятся под различным давлением. Поэтому при строительстве скважины необходимо крепить ее ствол и разобщать (изолировать) пласты, содержащие различные флюиды.

Обсадная труба

Рис.5. Обсадная труба в скважине

Крепление ствола скважины производится путем спуска в нее специальных труб, называемых обсадными. Ряд обсадных труб, соединенных последовательно между собой, составляет обсадную колонну. Для крепления скважин применяют стальные обсадные трубы (рис. 5).

Насыщенные различными флюидами пласты разобщены непроницаемыми горными породами - «покрышками». При бурении скважины эти непроницаемые разобщающие покрышки нарушаются и создается возможность межпластовых перетоков, самопроизвольного излива пластовых флюидов на поверхность, обводнения продуктивных пластов, загрязнения источников водоснабжения и атмосферы, коррозии спущенных в скважину обсадных колонн.

В процессе бурения скважины в неустойчивых горных породах возможны интенсивное кавернообразование, осыпи, обвалы и т.д. В ряде случаев дальнейшая углубка ствола скважины становится невозможной без предварительного крепления ее стенок.

Для исключения таких явлений кольцевой канал (кольцевое пространство) между стенкой скважины и спущенной в нее обсадной колонной заполняется тампонирующим (изолирующим) материалом (рис. 6). Это составы, включающие вяжущее вещество, инертные и активные наполнители, химические реагенты. Их готовят в виде растворов (чаще водных) и закачивают в скважину насосами. Из вяжущих веществ наиболее широко применяют тампонажные портландцементы. Поэтому процесс разобщения пластов называют цементированием.

Таким образом, в результате бурения ствола, его последующего крепления и разобщения пластов создается устойчивое подземное сооружение определенной конструкции.

Под конструкцией скважины понимается совокупность данных о числе и размерах (диаметр и длина) обсадных колонн, диаметрах ствола скважины под каждую колонну, интервалах цементирования, а также о способах и интервалах соединения скважины с продуктивным пластом (рис. 7).

Сведения о диаметрах, толщинах стенок и марках сталей обсадных труб по интервалам, о типах обсадных труб, оборудовании низа обсадной колонны входят в понятие конструкции обсадной колонны.

В скважину спускают обсадные колонны определенного назначения: направление, кондуктор, промежуточные колонны, эксплуатационная колонна.

Направление спускается в скважину для предупреждения размыва и обрушения горных пород вокруг устья при бурении под кондуктор, а также для соединения скважины с системой очистки бурового раствора. Кольцевое пространство за направлением заполняют по всей длине тампонажным раствором или бетоном. Направление спускают на глубину от нескольких метров в устойчивых породах, до десятков метров в болотах и илистых грунтах.

Кондуктором обычно перекрывают верхнюю часть геологического разреза, где имеются неустойчивые породы, пласты, поглощающие буровой раствор или проявляющие, подающие на поверхность пластовые флюиды, т.е. все те интервалы, которые будут осложнять процесс дальнейшего бурения и вызывать загрязнение окружающей природной среды. Кондуктором обязательно должны быть перекрыты все пласты, насыщенные пресной водой.

Рис. 7. Схема конструкции скважины



Кондуктор служит также для установки противовыбросового устьевого оборудования и подвески последующих обсадных колонн. Кондуктор спускают на глубину нескольких сотен метров. Для надежного разобщения пластов, придания достаточной прочности и устойчивости кондуктор цементируется по всей длине.

Эксплуатационная колонна спускается в скважину для извлечения нефти, газа или нагнетания в продуктивный горизонт воды или газа с целью поддержания пластового давления. Высота подъема тампонажного раствора над кровлей продуктивных горизонтов, а также устройством ступенчатого цементирования или узлом соединения верхних секций обсадных колонн в нефтяных и газовых скважинах должна составлять соответственно не менее 150-300 м и 500 м.

Промежуточные (технические) колонны необходимо спускать, если невозможно пробурить до проектной глубины без предварительного разобщения зон осложнений (проявлений, обвалов). Решение об их спуске принимается после анализа соотношения давлений, возникающих при бурении в системе «скважина-пласт».

Если давление в скважине Рс меньше пластового Рпл (давления флюидов, насыщающих пласт), то флюиды из пласта будут поступать в скважину, произойдет проявление. В зависимости от интенсивности проявления сопровождаются самоизливом жидкости (газа ) на устье скважины (переливы), выбросами, открытым (неконтролируемым) фонтанированием. Эти явления осложняют процесс строительства скважины, создают угрозу отравлений, пожаров, взрывов.

При повышении давления в скважине до некоторой величины, называемой давлением начала поглощения Рпогл, жидкость из скважины поступает в пласт. Этот процесс называется поглощением бурового раствора. Рпогл может быть близким или равным пластовому, а иногда приближается к величине вертикального горного давления, определяемого весом расположенных выше горных пород.

Иногда поглощения сопровождаются перетоками флюидов из одного пласта в другой, что приводит к загрязнению источников водоснабжения и продуктивных горизонтов. Снижение уровня жидкости в скважине вследствие поглощения в одном из пластов обуславливает понижение давления в другом пласте и возможность проявлений из него.

Давление, при котором происходит раскрытие естественных сомкнутых трещин или образование новых, называется давлением гидравлического разрыва пласта Ргрп. Такое явление сопровождается катастрофическим поглощением бурового раствора.

Характерно, что во многих нефтегазоносных районах пластовое давление Рпл близко к гидростатическому давлению столба пресной воды Рг (далее просто гидростатическое давление) высотой Нж, равной глубине Нп, на которой залегает данный пласт. Это объясняется тем, что давление флюидов в пласте чаще обусловлено напором краевых вод, область питания которых имеет связь с дневной поверхностью на значительных расстояниях от месторождения.

Поскольку абсолютные значения давлений зависят от глубины Н, их соотношения удобнее анализировать, пользуясь величинами относительных давлений, которые представляют собой отношения абсолютных значений соответствующих давлений к гидростатическому давлению Рг, т.е.:

Рпл* = Рпл / Рг;

Ргр* = Ргр / Рг;

Рпогл* = Рпогл / Рг;

Ргрп* = Ргрп / Рг.

Здесь Рпл – пластовое давление; Ргр – гидростатическое давление бурового раствора; Рпогл – давление начала поглощения; Ргрп – давление гидроразрыва пласта.

Относительное пластовое давление Рпл* часто называют коэффициентом аномальности Ка. Когда Рпл* приблизительно равно 1,0, пластовое давление считается нормальным, при Рпл* большем 1,0 – аномально высоким (АВПД), а при Рпл* меньшем 1,0 – аномально низким (АНПД).

Одним из условий нормального неосложненного процесса бурения является соотношение

а) Рпл* < Ргр* < Рпогл*(Ргрп*)

Процесс бурения осложняется, если по каким либо причинам относительные давления окажутся в соотношении:

б) Рпл* > Ргр* < Рпогл*

или

в) Рпл* < Ргр* > Рпогл* (Ргрп*)

Если справедливо соотношение б), то наблюдаются только проявления, если в), то наблюдаются и проявления и поглощения.

Промежуточные колонны могут быть сплошными (их спускают от устья до забоя) и не сплошными (не доходящими до устья). Последние называются хвостовиками.

Принято считать, что скважина имеет одноколонную конструкцию, если в нее не спускаются промежуточные колонны, хотя спущены и направление и кондуктор. При одной промежуточной колонне скважина имеет двухколонную конструкцию. Когда имеются две и более технические колонны, скважина считается многоколонной.

Конструкция скважины задается следующим образом: 426, 324, 219, 146 – диаметры обсадных колонн в мм; 40, 450, 1600, 2700 – глубины спуска обсадных колонн в м; 350, 1500 – уровень тампонажного раствора за хвостовиком и эксплуатационной колонной в м; 295, 190 – диаметры долот в мм для бурения скважины под 219 – и 146 –мм колонны.

1.2. СПОСОБЫ БУРЕНИЯ СКВАЖИН

Бурить скважины можно механическим, термическим, электроимпульсным и другими способами (несколько десятков). Однако промышленное применение находят только способы механического бурения – ударное и вращательное. Остальные пока не вышли из стадии экспериментальной разработки.

1.2.1. УДАРНОЕ БУРЕНИЕ

Ударное бурение. Из его всех разновидностей наибольшее распространение получило ударно-канатное бурение (рис. 8).

Рис. 8. Схема ударно-канатного бурения скважин

Буровой снаряд, который состоит из долота 1, ударной штанги 2, раздвижной штанги-ножниц 3 и канатного замка 4 , спускают в скважину на канате 5, который, огибая блок 6, оттяжной ролик 8 и наравляющий ролик 10, сматывается с барабана 11 бурового станка. Скорость спуска бурового снаряда регулируют тормозом 12. Блок 6 установлен на вершине мачты 18. Для гашения вибраций, возникающих при бурении, применяются амортизаторы 7.

Кривошип 14 при помощи шатуна 15 приводит в колебательное движение балансирную раму 9. При опускании рамы оттяжной ролик 8 натягивает канат и поднимает буровой снаряд над забоем. При подъеме рамы канат опускается, снаряд падает, и при ударе долота о породу последняя разрушается.

По мере углубления скважины канат удлиняют, сматывая его с барабана 11. Цилиндричность скважины обеспечивается поворотом долота в результате раскручивания каната под нагрузкой (во время приподъема бурового снаряда) и скручивания его при снятии нагрузки (во время удара долота о породу).

Эффективность разрушения породы при ударно-канатном бурении прямо пропорциональна массе бурового снаряда, высоте его падения, ускорению падения, числу ударов долота о забой в единицу времени и обратно пропорциональна квадрату диаметра скважины.

В процессе разбуривания трещиноватых и вязких пород возможно заклинивание долота. Для освобождения долота в буровом снаряде применяют штангу-ножницы, изготовленные в виде двух удлиненных колец, соединенных друг с другом подобно звеньям цепи.

Процесс бурения будет тем эффективнее, чем меньшее сопротивление долоту бурового снаряда оказывает накапливающаяся на забое скважины выбуренная порода, перемешанная с пластовой жидкостью. При отсутствии или недостаточном притоке пластовой жидкости в скважину с устья периодически доливают воду. Равномерное распределение частиц выбуренной породы в воде достигается периодическим расхаживанием (приподъемом и опусканием) бурового снаряда. По мере накопления на забое разрушеной породы (шлама) возникает необходимость в очистке скважины. Для этого с помощью барабана поднимают буровой снаряд из скважины и многократно спускают в нее желонку 13 на канате 17, сматываемом с барабана 16. В днище желонки имеется клапан. При погружении желонки в зашламленную жидкость клапан открывается и желонка заполняется этой смесью, при подъеме желонки клапан закрывается. Поднятую на поверхность зашламленную жидкость выливают в сборную емкость. Для полной очистки скважины приходится спускать желонку несколько раз подряд.

После очистки забоя в скважину опускают буровой снаряд, и процесс бурения продолжается.

При ударном бурении скважина, как правило, не заполнена жидкостью. Поэтому, во избежание обрушения породы с ее стенок, спускают обсадную колонну, состоящую из металлических обсадных труб, соединенных друг с другом с помощью резьбы или сварки. По мере углубления скважины обсадную колону продвигают к забою и периодически удлиняют (наращивают) на одну трубу.

Ударный способ более 50 лет не применяется на нефтегазовых промыслах России. Однако в разведочном бурении на россыпных месторождениях, при инженерно-геологических изысканиях, бурении скважин на воду и т.п. находит свое применение.

1.2.2. ВРАЩАТЕЛЬНОЕ БУРЕНИЕ СКВАЖИН

При вращательном бурении разрушение породы происходит в результате одновременного воздействия на долото нагрузки и крутящего момента. Под действием нагрузки долото внедряется в породу, а под влиянием крутящего момента скалывает ее.

Существует две разновидности вращательного бурения – роторный и с забойными двигателями.

При роторном бурении (рис. 9) мощность от двигателей 9 передается через лебедку 8 к ротору 16 - специальному вращательному механизму, установленному над устьем скважины в центре вышки. Ротор вращает бурильную колонну и привинченное к ней долото 1. Бурильная колонна состоит из ведущей трубы 15 и привинченных к ней с помощью специального переводника 6 бурильных труб 5.

Следовательно, при роторном бурении углубление долота в породу происходит при движении вдоль оси скважины вращающейся бурильной колонны, а при бурении с забойным двигателем – невращающейся бурильной колонны. Характерной особенностью вращательного бурения является промывка

При бурении с забойным двигателем долото 1 привинчено к валу, а бурильная колонна – к корпусу двигателя 2. При работе двигателя вращается его вал с долотом, а бурильная колонна воспринимает реактивный момент вращения корпуса двигателя, который гасится невращающимся ротором (в ротор устанавливают специальную заглушку).

Буровой насос 20, приводящийся в работу от двигателя 21, нагнетает буровой раствор по манифольду (трубопроводу высокого давления) 19 в стояк - трубу 17, вертикально установленную в правом углу вышки, далее в гибкий буровой шланг (рукав) 14, вертлюг 10 и в бурильную колонну. Дойдя до долота, промывочная жидкость проходит через имеющиеся в нем отверстия и по кольцевому пространству между стенкой скважины и бурильной колонной поднимается на поверхность. Здесь в системе емкостей 18 и очистительных механизмах (на рисунке не показаны) буровой раствор очищается от выбуренной породы, затем поступает в приемные емкости 22 буровых насосов и вновь закачивается в скважину.

В настоящее время применяют три вида забойных двигателей – турбобур, винтовой двигатель и электробур (последний применяют крайне редко).

При бурении с турбобуром или винтовым двигателем гидравлическая энергия потока бурового раствора, двигающегося вниз по бурильной колонне, преобразуется в механическую на валу забойного двигателя, с которым соединено долото.

При бурении с электробуром электрическая энергия подается по кабелю, секции которого смонтированы внутри бурильной колонны и преобразуется электродвигателем в механическую энергию на валу, которая непосредственно передается долоту.

По мере углубления скважины бурильная колонна, подвешенная к полиспастной системе, состоящей из кронблока (на рисунке не показан), талевого блока 12, крюка 13 и талевого каната11, подается в скважину. Когда ведущая труба 15 войдет в ротор 16 на всю длину, включают лебедку, поднимают бурильную колонну на длину ведущей трубы и подвешивают бурильную колонну с помощью клиньев на столе ротора. Затем отвинчивают ведущую трубу 15 вместе с вертлюгом 10 и спускают ее в шурф (обсадную трубу, заранее установленную в специально пробуренную наклонную скважину) длиной, равной длине ведущей трубы. Скважина под шурф бурится заранее в правом углу вышки примерно на середине расстояния от центра до ее ноги. После этого бурильную колонну удлиняют (наращивают), путем привинчивания к ней двухтрубной или трехтрубной свечи (двух или трех свинченных между собой бурильных труб), снимают ее с клиньев, спускают в скважину на длину свечи, подвешивают с помощью клиньев на стол ротора, поднимают из шурфа ведущую трубу с вертлюгом, привинчивают ее к бурильной колонне, освобождают бурильную колонну от клиньев, доводят долото до забоя и продолжают бурение .

Для замены изношенного долота поднимают из скважины всю бурильную колонну, а затем вновь спускают ее. Спуско-подъемные работы ведут также с помощью полиспастной системы. При вращении барабана лебедки талевый канат наматывается на барабан или сматывается с него, что и обеспечивает подъем или спуск талевого блока и крюка. К последнему с помощью штропов и элеватора подвешивают поднимаемую или спускаемую бурильную колонну.

При подъеме БК развинчивают на свечи и устанавливают их внутри вышки нижними концами на подсвечники, а верхние заводят за специальные пальцы на балконе верхового рабочего. Спускают БК в скважину в обратной последовательности.

Таким образом процесс работы долота на забое скважины прерывается наращиванием бурильной колонны и спуско-подъемными операциями (СПО)для смены изношенного долота.

Как правило, верхние участки разреза скважины представляют собой легкоразмываемые отложения. Поэтому пред бурением скважины сооружают ствол (шурф) до устойчивых пород (3-30 м) и в него спускают трубу 7 или несколько свинченных труб (с вырезанным окном в верхней части) длиной на 1-2 м больше глубины шурфа. Затрубное пространство цементируют или бетонируют. В результате устье скважины надежно укрепляется.

К окну в трубе приваривают короткий металлический желоб, по которому в процессе бурения буровой раствор направляется в систему емкостей 18 и далее, пройдя через очистительные механизмы (на рисунке не показаны), поступает в приемную емкость 22 буровых насосов.

Трубу (колонну труб) 7, установленную в шурфе, называют направлением. Установка направления и ряд других работ, выполняемых до начала бурения , относятся к подготовительным. После их выполнения составляют акт о вводе в эксплуатацию буровой установки и приступают к бурению скважины.

Пробурив неустойчивые, мягкие, трещиноватые и кавернозные породы, осложняющие процесс бурения (обычно 400-800 м), перекрывают эти горизонты кондуктором 4 и цементируют затрубное пространство 3 до устья. При дальнейшем углублении могут встретиться горизонты, также подлежащие изоляции, такие горизонты перекрываются промежуточными (техническими) обсадными колоннами.

Пробурив скважину до проектной глубины, спускают и цементируют эксплуатационную колонну (ЭК).

После этого все обсадные колонны на устье скважины обвязывают друг с другом, применяя специальное оборудование . Затем против продуктивного пласта в ЭК и цементном камне пробивают несколько десятков (сотен) отверстий, по которым в процессе испытания, освоения и последующей эксплуатации нефть (газ ) будут поступать в скважину.

Сущность освоения скважины сводится к тому, чтобы давление столба бурового раствора, находящегося в скважине, стало меньше пластового. В результате создавшегося перепада давления нефть (газ ) из пласта начнет поступать в скважину. После комплекса исследовательских работ скважину сдают в эксплуатацию .

На каждую скважину заводится паспорт, где точно отмечаются ее конструкция, местоположение устья, забоя и пространственное положение ствола по данным инклинометрических измерений ее отклонений от вертикали (зенитные углы) и азимута (азимутальные углы). Последние данные особенно важны при кустовом бурении наклонно-направленных скважин во избежание попадания ствола бурящейся скважины в ствол ранее пробуренной или уже эксплуатирующейся скважины. Фактическое отклонение забоя от проектного не должно превышать заданных допусков.

Буровые работы должны выполняться с соблюдением законов об охране труда и окружающей природной среды. Строительство площадки под буровую, трасс для передвижения буровой установки, подъездных путей, линий электропередач, связи, трубопроводов для водоснабжения, сбора нефти и газа , земляных амбаров, очистных устройств, отвал шлама должны осуществляться лишь на специально отведенной соответствующими организациями территории. После завершения строительства скважины или куста скважин все амбары и траншеи должны быть засыпаны, вся площадка под буровую – максимально восстановлена (рекультивирована) для хозяйственного использования.

1.3. КРАТКАЯ ИСТОРИЯ БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

Первые скважины в истории человечества бурили ударно-канатным способом за 2000 лет до нашей эры для добычи рассолов в Китае.

До середины 19 века нефть добывалась в небольших количествах, в основном из неглубоких колодцев вблизи естественных выходов ее на дневную поверхность. Со второй половины 19 века спрос на нефть стал возрастать в связи с широким использованием паровых машин и развитием на их основе промышленности, которая требовала больших количеств смазочных веществ и более мощных, чем сальные свечи, источников света.

Исследованиями последних лет установлено, что первая скважина на нефть была пробурена ручным вращательным способом на Апшеронском полуострове (Россия) в 1847 г. по инициативе В.Н. Семенова. В США первая скважина на нефть (25м) была пробурена в Пенсильвании Эдвином Дрейком в 1959 г. Этот год считается началом развития нефтедобывающей промышленности США. Рождение российской нефтяной промышленности принято отсчитывать от 1964 г., когда на Кубани в долине реки Кудако А.Н. Новосильцев начал бурить первую скважину на нефть (глубиной 55 м) с применением механического ударно-канатного бурения.

На рубеже 19-20 веков были изобретены дизельный и бензиновый двигатели внутреннего сгорания. Внедрение их в практику привело к бурному развитию мировой нефтедобывающей промышленности.

В 1901 г в США впервые было применено вращательное роторное бурение с промывкой забоя циркулирующим потоком жидкости. Необходимо отметить, что вынос выбуренной породы циркулирующим потоком воды изобрел в 1848 г. французский инженер Фовелль и впервые применил этот способ при бурении артезианской скважины в монастыре св. Доминика. В Росси роторным способом первая скважина была пробурена в 1902 г. на глубину 345 м в Грозненском районе.

Одной из труднейших проблем, возникших при бурении скважин, особенно при роторном способе, была проблема герметизации затрубного пространства между обсадными трубами и стенками скважины. Решил эту проблему русский инженер А.А. Богушевский, разработавший и запатентовавший в 1906 г. способ закачки цементного раствора в обсадную колонну с последующим вытеснением его через низ (башмак) обсадной колонны в затрубное пространство. Этот способ цементирования быстро распространился в отечественной и зарубежной практике бурения .

В 1923 г. выпускник Томского технологического института М.А. Капелюшников в соавторстве с С.М. Волохом и Н.А. Корнеевым изобрели гидравлический забойный двигатель – турбобур, определивший принципиально новый путь развития технологии и техники бурения нефтяных и газовых скважин. В 1924 г. в Азербайджане была пробурена первая в мире скважина с помощью одноступенчатого турбобура, получившего название турбобура Капелюшникова.

Особое место занимают турбобуры в истории развития бурения наклонных скважин. Впервые наклонная скважина была пробурена турбинным способом в 1941 г. в Азербайджане. Совершенствование такого бурения позволило ускорить разработку месторождений, расположенных под дном моря или под сильно пересеченной местностью (болота Западной Сибири). В этих случаях бурят несколько наклонных скважин с одной небольшой площадки, на строительство которой требуется значительно меньше затрат, чем на сооружение площадок под каждую буровую при бурении вертикальных скважин. Такой способ сооружения скважин получил наименование кустового бурения.

В 1937-40 гг. А.П. Островским, Н.Г. Григоряном, Н.В. Александровым и другими была разработана конструкция принципиально нового забойного двигателя – электробура.

В США в 1964 г. был разработан однозаходный гидравлический винтовой забойный двигатель, а в 1966 в России разработан многозаходный винтовой двигатель, позволяющий осуществлять бурение наклонно-направленных и горизонтальных скважин на нефть и газ .

В Западной Сибири первая скважина, давшая мощный фонтан природного газа 23 сентября 1953 г. была пробурена у пос. Березово на севере Тюменской области. Здесь, в Березовском районе зародилась в 1963 г. газодобывающая промышленность Западной Сибири. Первая нефтяная скважина в Западной Сибири зафонтанировала 21 июня 1960 г. на Мулымьинской площади в бассейне реки Конда.