Большую скорость передачи данных а. Единицы измерения скорости передачи информации

Обмен информацией производится по каналам передачи информации.

Каналы передачи информации могут использовать различные физические принципы. Так, при непосредственном общении людей информация передаётся с помощью звуковых волн, а при разговоре по телефону - с помощью электрических сигналов, которые распространяются по линиям связи.

Канал связи - технические средства, позволяющие осуществлять передачу данных на расстоянии.

Компьютеры могут обмениваться информацией с использованием каналов связи различной физической природы: кабельных, оптоволоконных, радиоканалов и др.

Скорость передачи информации (скорость информационного потока) - количество информации, передаваемое за единицу времени.

Общая схема передачи информации включает в себя отправителя информации, канал передачи информации и получателя информации.

Основной характеристикой каналов передачи информации является их пропускная способность .

Пропускная способность канала - максимальная скорость передачи информации по каналу связи в единицу времени.

Пропускная способность канала равна количеству информации, которое может передаваться по нему в единицу времени.

Объем переданной информации \(V\) вычисляется по формуле:

где \(q\) - пропускная способность канала (в битах в секунду или подобных единицах), а \(t \)- время передачи.

Обычно пропускная способность измеряется в битах в секунду (бит/с ) и кратных единицах Кбит/с и Мбит/с .

Однако иногда в качестве единицы используется байт в секунду (байт/с ) и кратные ему единицы Кбайт/с и Мбайт/с .

Соотношения между единицами пропускной способности канала передачи информации такие же, как между единицами измерения количества информации:

1 байт/с = 2 3 бит/с = 8 бит/с; 1 Кбит/с = 2 10 бит/с = 1024 бит/с; 1 Мбит/с = 2 10 Кбит/с = 1024 Кбит/с; 1 Гбит/с = 2 10 Мбит/с = 1024 Мбит/с.

Пример:

Сколько секунд потребуется модему, передающему сообщения со скоростью \(28 800 \)бит/с, чтобы передать \(100\) страниц текста в \(30\) строк по \(60\) символов каждая, при условии, что каждый символ кодируется \(1\) байтом?

Решение. Вычислим объем файла в битах V = 100 ⋅ 30 ⋅ 60 ⋅ 8 бит = 1440000 бит.

Скорость передачи сообщения \(q = 28 800 \)бит/с.

Время равно t = V q = 1440000 28800 = 50 секунд.

Рассмотрим более сложную задачу.

Пример:

Устройство \(A\) передает информацию устройству \(C\) через устройство \(B\) в рамках следующих правил:

1. Информация передается пакетами по \(200\) байт.
2. Устройство \(B\) может одновременно принимать информацию от устройства \(А\) и передавать ранее полученную информацию устройству \(C\).
3. Устройство \(B\) может передавать очередной пакет устройству \(С\) только после того, как полностью получит этот пакет от устройства \(A\).
4. Устройство \(B\) обладает неограниченным по объему буфером, в котором может хранить полученные от устройства \(A\), но еще не переданные устройству \(C\) пакеты.

Пропускная способность канала между \(A\) и \(B\) – \(100\) байт в секунду.

Пропускная способность канала между \(B\) и \(C\) – \(50\) байт в секунду.

Было отправлено три пакета информации. Через сколько секунд \(C\) закончит прием всей информации от \(A\)?

Решение. Так как скорость приема информации устройством \(B\) больше, чем скорость ее передачи устройству C , то время передачи сложится из двух этапов.

Все неоднократно раз слышали про сети второго, третьего и четвертого поколения мобильной связи. Некоторые, возможно, уже читали и про сети будущего - пятого поколения. Но вопросы - что означает G, E, 3G, H, 3G+, 4G или LTE на экране смартфона и что среди этого быстрее до сих пор волнуют многих людей. Ответим на них.

Данные значки означают тип подключения вашего смартфона, планшета или модема к мобильной сети.

1. G (GPRS - General Packet Radio Services): самый медленный и давно устаревший вариант подключения пакетной передачи данных. Первый стандарт мобильного интернета, выполненный путем надстройки над GSM (после CSD-соединения до 9,6 кбит/с). Максимальная скорость GPRS-канала - 171,2 кбит/с. При этом реальная, как правило, на порядок ниже и интернет здесь не всегда работоспособен в принципе.

2. E (EDGE или EGPRS - Enhanced Data rates for GSM Evolution): более быстрая надстройка над 2G и 2,5G. Технология цифровой передачи данных. Скорость EDGE выше GPRS примерно в 3 раза: до 474,6 кбит/с. Однако она также относится ко второму поколению беспроводной связи и уже устарела. Реальная скорость EDGE обычно держится в районе 150-200 кбит/с и напрямую зависит от местонахождения абонента - то есть загруженности базовой станции в конкретном районе.

3. 3 G (Third Generation - третье поколение). Здесь по сети возможна не только передача данных, но и «голоса». Качество передачи речи в сетях 3G (если оба собеседника находятся в радиусе их действия) может быть на порядок выше, чем в 2G (GSM). Скорость интернета в 3G также значительно более высокая, а его качество, как правило, уже вполне достаточное для комфортной работы на мобильных устройствах и даже стационарных компьютерах через USB-модемы. При этом на скорость передачи данных может влиять ваше текущее положение, в т.ч. находитесь ли вы на одном месте или движетесь в транспорте:

  • Находитесь без движения: обычно до 2 Мбит/с
  • Движетесь со скоростью до 3 км/ч: до 384 кбит/с
  • Движетесь со скорость до 120 км/ч: до 144 кбит/с.

4. 3,5 G, 3 G+, H, H+ (HSPDA - High-Speed Downlink Packet Access): следующая надстройка высокоскоростной пакетной передачи данных - уже над 3G. В данном случае скорость передачи данных вплотную приближается к 4G и в режиме H она составляет до 42 Мбит/с. В реальной жизни мобильный интернет в таком режиме в среднем работает у мобильных операторов на скоростях 3-12 Мбит/с (иногда выше). Для не разбирающихся: это весьма быстро и вполне достаточно, чтобы при стабильном соединении смотреть онлайн-видео в не слишком высоком качестве (разрешении) или качать тяжелые файлы.

Также в 3G появилась функция видеозвонка:

5. 4G, LTE (Long-Term Evolution - долговременное развитие, четвертое поколение мобильного интернета). Данная технология используется только для передачи данных (не для «голоса»). Максимальная download-скорость здесь - до 326 Мбит/с, upload - 172,8 Мбит/с. Реальные значения опять же на порядок ниже заявленных, но все равно они составляют десятки мегабит в секунду (на практике часто сопоставимо с режимом H; в условиях загруженности Москвы обычно 10-50 Мбит/с). При этом более быстрый PING и сама технология делают 4G наиболее предпочтительным стандартом для мобильного интернета в модемах. Смартфоны и планшеты в сетях 4G (LTE) держат заряд батареи дольше, нежели в 3G.

6. LTE-A (LTE Advanced - модернизация LTE). Пиковая скорость передачи данных здесь - до 1 Гбит/с. В реальности интернет способен работать на скоростях до 300 Мбит/с (в 5 раз быстрее обычного LTE).

7. VoLTE (Voice over LTE - голос по LTE, как дополнительное развитие технологии): технология передачи голосовых вызовов по сетям LTE на базе IP Multimedia Subsystem (IMS). Скорость соединения - до 5 раз быстрее по сравнению с 2G/3G, а качество самого разговора и передачи речи - еще выше и чище.

8. 5 G (пятое поколение сотовой связи на базе IMT-2020). Стандарт будущего, пока находится на стадии разработки и тестирования. Скорость передачи данных в коммерческом варианте сетей обещается выше LTE до 30 раз: максимально передача данных сможет осуществляться до 10 Гбит/с.

Разумеется, воспользоваться любой из вышеперечисленных технологий вы сможете в случае ее поддержки вашим оборудованием. Также ее работа зависит от возможностей самого мобильного оператора в конкретной точке местонахождения абонента и его тарифного плана.

Мы живем в эпоху стремительно развивающихся цифровых технологий. Современную реальность уже трудно представить без персональных компьютеров, ноутбуков, планшетов, смартфонов и прочих электронных гаджетов, которые функционируют не изолированно друг от друга, а объединены в локальную сеть и подключены к глобальной сети

Важной характеристикой всех этих устройств является пропускная способность сетевого адаптера, определяющая скорость передачи данных в локальной или глобальной сети. Кроме этого, имеют значение скоростные характеристики канала передачи информации. В электронных устройствах нового поколения возможно не только чтение текстовой информации без сбоев и зависаний, но и комфортное воспроизведение мультимедийных файлов (картинки и фотографии в высоком разрешении, музыка, видео, онлайн-игры).

В чем измеряется скорость передачи данных?

Чтобы определить этот параметр, надо знать время, за которые были переданы данные, и количество переданной информации. Со временем все понятно, а что такое количество информации и как его можно измерить?

Во всех электронных устройствах, являющихся по сути компьютерами, хранимая, обрабатываемая и передаваемая информация кодируется в двоичной системе нулями (нет сигнала) и единицами (есть сигнал). Один нуль или одна единица – это один бит, 8 бит составляют один байт, 1024 байт (два в десятой степени) – один килобайт, 1024 килобайта – один мегабайт. Далее идут гигабайты, терабайты и более крупные единицы измерения. Данные единицы обычно используются для определения объема информации, хранящейся и обрабатываемой на каком-либо конкретном устройстве.

Количество же передаваемой от одного устройства к другому информации измеряют в килобитах, мегабитах, гигабитах. Один килобит – это тысяча бит (1000/8 байт), один мегабит – тысяча килобит (1000/8 мегабайт) и так далее. Скорость, с которой передаются данные, принято указывать в количестве информации, проходящей за одну секунду (число килобит в секунду, мегабит в секунду, гигабит в секунду).

Скорость передачи данных по телефонной линии

В настоящее время для подключения к глобальной сети по телефонной линии, которая изначально была единственным каналом подключения к Интернету, используется преимущественно модемная технология ADSL. Она способна превратить аналоговые телефонные линии в средства высокоскоростной передачи данных. Интернет-соединение достигает скорости 6 мегабит в секунду, а максимальная скорость передачи данных по телефонной линии по древним технологиям не превышала 30 килобит в секунду.

Скорость передачи данных в мобильных сетях

Стандарты 2g, 3g и 4g используются в мобильных сетях.

2g пришел на замену 1g в связи с необходимостью перехода аналогового сигнала на цифровой в начале 90-х годов. На мобильных телефонах, поддерживавших 2g, стало возможно пересылать графическую информацию. Максимальная скорость передачи данных 2g превысила показатель 14 килобит в секунду. В связи с появлением мобильного интернета была также создана сеть 2,5g.

В 2002 году в Японии была разработана сеть третьего поколения, но массовое производство мобильных телефонов с поддержкой 3g началось значительно позже. Максимальная скорость передачи данных по 3g выросла на порядки и достигла 2 мегабит в секунду.

Обладатели новейших смартфонов имеют возможность воспользоваться всеми преимуществами сети 4g. Ее усовершенствование продолжается до сих пор. Она позволит людям, проживающим в малых населенных пунктах, свободно получать доступ в Интернет и сделает его значительно выгоднее подключения со стационарных устройств. Максимальная скорость передачи данных 4g просто огромная – 1 гигабит в секунду.

К тому же поколению, что и 4g, принадлежат сети lte. Стандарт lte является первой, самой ранней версией 4g. Следовательно, максимальная скорость передачи данных в lte существенно ниже и составляет 150 мегабит в секунду.

Скорость передачи данных по оптоволоконному кабелю

Передача информации по оптоволоконному кабелю на сегодняшний день является самой быстрой в компьютерных сетях. В 2014 году в Дании учеными была достигнута максимальная скорость передачи данных по оптоволокну 43 терабита в секунду.

Через несколько месяцев ученые из США и Нидерландов продемонстрировали скорость 255 терабит в секунду. Величина колоссальная, но это далеко не предел. В 2020 году планируется достижение показателя 1000 терабит в секунду. Скорость передачи данных по оптоволокну практически не ограничена.

Скорость загрузки информации по Wi-Fi

Wi-Fi – торговая марка, обозначающая беспроводные компьютерные сети, объединенные стандартом IEEE 802.11, в которых информация передается по радиоканалам. Теоретически максимальная скорость передачи данных wifi составляет 300 мегабит в секунду, а в реальности у лучших моделей роутеров она не превышает 100 мегабит в секунду.

Преимуществами Wi-Fi являются возможность беспроводного подключения к Интернету с помощью одного роутера сразу нескольких устройств и низкий уровень радиоизлучения, который на порядок меньше, чем у сотовых телефонов в момент их использования.

Скорость интернета – это объем информации, принятой и переданной компьютером за промежуток времени. Сейчас этот параметр чаще всего измеряется в Мегабитах в секунду, но это не единственная величина, также могут использоваться килобиты в секунду. Гигабиты пока еще в повседневной жизни не используются.

В то же время, размер переданных файлов измеряется обычно в байтах, но не берется в расчет время. Например: Байты, Мбайты или Гбайты.

Очень просто посчитать время, за которое получится скачать файл из сети, используя простую формулу. Известно, что наименьшее количество информации – это бит. Затем идет байт, в котором содержится 8 бит информации. Таки образом скорость в 10 Мегабит в секунду (10/8 = 1,25) позволяет передать 1,25 Мбайта в секунду. Ну а 100 Мбит/сек – 12,5 Мегабайт (100/8) соответственно.

Также можно рассчитать, за сколько загрузиться файл определенного размера из интернета. Например, фильм в 2 Гб загружаемый со скорость 100 Мегабит в секунду, можно скачать за 3 минуты. 2 Гб – это 2048 Мегабайт, которые следует поделить на 12,5. Получим 163 секунды, что равно примерно 3 минутам.
К сожалению, не все знакомы с единицами в которых принято измерять информацию, поэтому упомянем основные единицы:

1 байт – это 8 бит
1 Килобайт (Кб) соответствует 1024 байта
1 Мегабайт (Мб) будет равен 1024 Кб
1 Гигабайт (Гб) соответственно равняется 1024 Мб
1 Терабайт – 1024 Гб

Что влияет на скорость

То, с какой скоростью будет работать интернет на устройстве, зависит прежде всего:

От тарифного плана, предоставляемого провайдером
От пропускной возможности канала. Часто провайдер предоставляет общую скорость абонентам. То есть канал делится на всех, и если все пользователи активно используют сеть, то и скорость может снижаться.
От расположения и настроек сайта, к которому обращается пользователь. Некоторые ресурсы имеют ограничения и не позволяют превышать определенный порог при загрузке. Также сайт может находится на другом континенте, что также повлияет на загрузку.

На скорость передачи данных в некоторых случаях, влияют как внешние, так и внутренние факторы, среди которых:

Расположение сервера, к которому идет обращение
Настройка и ширина канал Wi-Fi роутера, если подключение происходит «по воздуху»
Приложения, запущенные на устройстве
Антивирусы и фаерволы
Настройка ОС и ПК

Утверждает, что его программа способна максимально использовать ресурсы Ethernet. За счет собственного сетевого драйвера, собственного TCP-стека и работы в обход ядра операционной системы она действительно способна приблизиться к физическим ограничениям стандарта Ethernet.

Разработчик сканера Masscan Роберт Грэм опубликовал результаты , которые демонстрируют реальную производительность его программы.

Для сканера важно количество отправленных пакетов в секунду. Стандарт Ethernet требует, чтобы между пакетами был 12-байтовый период «тишины», так и определяется окончание одного пакета и начало следующего. В конце каждого пакета также нужно передавать CRC-код (4 байта) для проверки целостности передачи, а в начале пакета - обязательную преамбулу из 8 байт. Есть и еще одно ограничение - минимальный размер пакета 60 байт, это древнее ограничение из 80-х годов, которое не имеет смысла в настоящее время, но сохраняется ради совместимости.

Если учесть все ограничения, то пакеты должны быть минимум по 84 байта. Таким образом, для сети 1 Гбит/с мы получаем теоретическое ограничение 1 000 000 000/84*8 = 1 488 095 пакетов в секунду.

На современной 10-гигабитной сети это число можно увеличить в десять раз: 14 880 952 пакета в секунду.

При скане портов нам не нужно использовать все 60 байт, достаточно 20 байт для IP-заголовка и 20 байт для TCP-заголовка, всего 40 байт. То есть эффективная скорость передачи пакетов составляет 1488095 х 40 = 476 Мбит/с. Другими словами, даже если мы на 100% задействуем физический ресурс Ethernet, провайдер или программа замера трафика на гигабитном канале покажет скорость передачи данных 476 Мбит/с. Такая нестыковка объяснима, потому что при нормальном серфинге пакеты в 40 байт не используются, там пакеты обычно по 500 байт, так что оверхед из служебных данных можно игнорировать.

На практике, сканер может игнорировать некоторые стандарты Ethernet, например, уменьшить паузу между пакетами с 12 до 5 байт, а преамбулу - с 8 до 4 байт. Минимальный размер пакета можно уменьшить с 84 до 67 байт. В этом случае по гигабитному каналу удастся передать 1 865 671 пакет в секунду, что увеличивает демонстрируемую в тестах скорость с 476 Мбит/с до 597 Мбит/с. Правда, тут возможны неприятные последствия: маршрутизатор на пути ваших пакетов может отбрасывать некоторые из них, что снизит реальную эффективную скорость передачи данных.

Есть и другие проблемы. По неизвестным причинам Linux не способен преодолеть рубеж 1,488 млн пакетов в секунду на гигабитном Ethernet’е. На той же системе, но при подключении канала 10 Гбит/с Linux едва преодолевает рубеж 2 млн пакетов в секунду. На практике реальная скорость в Linux-системе составляет примерно 1,3 млн пакетов в секунду на гигабитном канале. Опять же, Роберт Грэм не имеет понятия, почему это так.