Спектральный анализ металла. Анализ металлов и сплавов Спектральный и химический анализ сталей

При облучении атом вещества переходит в возбуждённое состояние, сопровождающееся переходом электронов на более высокие квантовые уровни. В возбуждённом состоянии атом находится около одной микросекунды, после чего возвращается в основное состояние. При этом электроны с внешних оболочек либо заполняют образовавшиеся вакантные места, а излишек энергии испускается в виде фотона, либо энергия передается другому электрону из внешних оболочек. Каждый атом испускает фотоэлектрон с энергией строго пределённого значения. По энергии и количеству квантов судят о строении вещества. После возбуждения спектр регистрируется на специальном детекторе. Чем лучше спектральное разрешение детектора, тем точнее он сможет отделять друг от друга фотоны от разных элементов. После попадания на детектор фотоэлектрон преобразовывается в импульс напряжения и передается на компьютер. По пикам полученного спектра качественно определяется, какие элементы присутствуют в образце.
Для получения точного количественного содержания полученный спектр обрабатывается с помощью специальной программы калибровки (количественной градуировки прибора). Калибровка проводится с использованием стандартных образцов, чей элементный состав точно известен.
РФА не разрушает и не деформирует пробу, не требует пробоподготовки, делает ненужной измерение количества пробы - взвешивание, измерение объема и т.п. Этот метод широко используется на производстве и в научных лабораториях.
Аппараты ComPact eco PIN и Cube PIN для количественного анализа наиболее распространенных сплавов в ювелирной промышленности. Разработаны на базе кремниевого детектора высокого разрешения, являющегося последним словом в этой области.
Калибровка
Предварительная калибровка для золота и других драгоценных металлов.
Операционная система
X-MasteR Основной задачей операционной системы является управление параметрами рентгеновской системы, а также сбор и обработка данных измерений.
Анализаторы оснащены современным, простым в использовании программным обеспечением с точным алгоритмом анализа состава ювелирных украшений, монет и других изделий из драгоценных металлов. Программное обеспечение обеспечивает сбор данных, управление, пиковую идентификацию, анализ спектральных характеристик, количественный анализ исследуемого сплава, генерацию отчетов, управление статистическими данными, их хранение и печать.
Компактность и мобильность
Аппараты имеют небольшие массу и габариты и являются переносными, что позволяет их устанавливать практически где угодно - от больших выставочных залов до маленьких шоурумов. Каждый аппарат выпускается в двух вариантах конструктивного исполнения:
ComPact и Cube
Аппараты ComPact eco PIN и Cube PIN с использованием кремниевого детектора высокого разрешения в сочетании с цифровой обработкой данных обеспечивают отличные показатели пороговой чувствительности и точности. По сравнению с общепринятыми методами раз решение выше почти в четыре раза, а разделение элементов также намного лучше. Высокий уровень характеристик получен во многом благодаря более высокому отношению «сигнал /шум».
Безопасность Эксплуатация источника рентгеновского излучения отвечает установленным требованиям. Встроенная система безопасности обеспечивает эффективное управление всеми защитными функциями и блокировками аппаратов Citizen.
Простота в использовании
Предлагаемые технические устройства являются удобными и простыми в эксплуатации, не требуют специально обученного персонала. Необходимо просто поместить испытуемый образец в рабочую камеру и через 35 - 180 сек. получить готовый результат. Анализ проводится бесконтактным и безопасным способом.

Время измерения 35 - 180 сек.

Размеры камеры
Высота 170 мм, ширина 330 мм, глубина 200 мм (Cube)
Выкладка образцов Подъемно-поворотный столик z-образного типа


Наибольшим спросом у Заказчиков услуг Испытательного центра пользуются исследования химического состава металлов и сплавов, которые проводит лаборатория "Спектральных, химико-аналитических исследований и эталонных образцов" . Аналитическое оборудование лаборатории позволяет с высочайшей точностью определять (качественно и количественно) практически все элементы периодической таблицы таблицы Д.И. Менделеева.

Воспользовавшись услугами лаборатории "Спектральных, химико-аналитических исследований и эталонных образцов" Испытательного центра, Вы сможете :

Определить химический состав металлов, сплавов, лигатур, керамических материалов, что позволит идентифицировать марку, соответствие ГОСТ или ТУ;

Определить количественное содержание серы и углерода в сплавах и сталях;

Определить количественное содержание легирующих элементов в сталях и сплавах;

Определить количественное содержание микропримесей в сталях и сплавах;

Определить содержание кислорода и азота в сплавах и сталях;

Провести контроль качества партий материалов и изделий;

Получить инженерно-техническую и технологическую консультации.

При проведении исследований мы используем следующее аналитическое оборудование:

Масс-спектрометры c индуктивно связанной плазмой XSeries-2 и ICAP-Qc;

Оптико-эмиссионный спектрометр Magellan Q8;

Газоанализаторы LECO серии 600;

Атомно-эмиссионные спектрометры с индуктивно связанной плазмой VARIAN-730 ES, OPTIMA 8300 (производства фирмы Perkin Elmer);

Рентгенофлуоресцентные спектрометры S4 EXPLORER и S8 TIGER;

Оптико-эмиссионный спектрометр ARL 4460;

Атомно-абсорбционный спектрометр VARIAN-240 FS.

Наименование испытаний и исследований

НАИМЕНОВАНИЕ испытаний/исследований оборудование нормативно-техническая документация

ХИМИЧЕСКИЙ АНАЛИЗ

Химический анализ. Никелевые
жаропрочные сплавы (легирующие
элементы)

Спектрометр ПЭ-5400В

ОСТ 90128-142-96, ОСТ 190429-433-96, ГОСТы 24018.0-24018.8,
ГОСТы 6689.1-6689.22, ГОСТ 12344-12365, ГОСТ 17051-82

Атомно-абсорбционный анализ
сталей и никелевых сплавов
(легирующие элементы)

Атомно-абсорбционный
спектрометр Varian 240FS

МВИ 1.2.011-2009, ГОСТ Р ИСО 4940-2010, ГОСТ Р ИСО 4943-2010,
ГОСТы 6689.1-6689.22, ГОСТ 6689.24, ГОСТы 22536.3-22536.12, ГОСТ 22536.14,
ГОСТ Р 50424, ГОСТ 12346-12365

Атомно-абсорбционный анализ
легких сплавов на основах Ti, Al, Mg
(легирующие элементы +
макропримеси)

Атомно-абсорбционный
спектрометр Varian 240FS
ГОСТ 11739.1-11739.24, ГОСТ 3240.0-3240.21, ГОСТ 19863.1-19863.16

Атомно-эмиссинный анализ
никелевых сплавов и сталей
(легирующие
элементы+макропримеси)

Атомно-эмиссионный
спектрометр Varian 730-ES

ГОСТ 6012-98, ГОСТ Р ИСО 13898-2-2006, ГОСТ Р ИСО 13898-3-2007,
ГОСТ Р ИСО 13898-4-2007, ГОСТ Р ИСО 13899-2-2009, ГОСТ Р 51056-97,
ГОСТ Р 51927-2002

Атомно-эмиссинный анализ легких
сплавов на основах Al, Ti, Mg
(легирующие
элементы+макропримеси)

Атомно-эмиссионный
спектрометр Varian 730-ES

ГОСТ 11739.0-11739.24, ГОСТ 9853.24

Определение массовой доли
двуокиси кремния в исходном
продукте и готовом гидролизованном
растворе этилсиликата ЭТС-40

Весы AND HR-200 ГОСТ 26371-84

Определение продолжительности
гелеобразования в готовом
гидролизованном растворе
этилсиликата ЭТС-40

Термостат ГОСТ 26371-84

Определение содержания ионов Cl,
SO??

Анализатор жидкости
ЭКОТЕСТ-2000

ГОСТ 9.902-81

Определение рН среды (электролиты)

Измеритель
комбинированный Seven
Easy pH (рН-метр

ОСТ 1 90188-90193-90, ОСТ 1 90388-90392-90

Определение рН среды (ткани,
волокна, герметики)

Измеритель
комбинированный Seven
Easy pH (рН-метр)

ГОСТ 9.902-81

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Спектральный анализ.Никелевые
жаропрочные сплавы (12 элементов
легирующие) и стали

Оптико-эмиссионный
спектрометр ARL-4460

ПИ 1.2.417-89, ГОСТ 6012-98, ГОСТ 18895, МВИ 1.2.003-2009, МВИ 1.2.001-2009

Спектральный анализ. Никелевые
сплавы типа: ВЖЛ8, ЭИ698, Э44376,
ВКН4У, ЖС47 (12 элементов
легированные) и сталей

Рентгенофлюоресцентный
спектрометр S4EXPLORER

ГОСТ 28033-89, МВИ 1.2.015-2011

Спектральный анализ легких сплавов
на основах Al, Ti, Mg

Рентгенофлюоресцентный
спектрометр S4EXPLORER

ГОСТ 7727, ГОСТ 7728


для количественного анализа сплавов

Рентгенофлюоресцентный
спектрометр S4EXPLORER

ГОСТ 7727, ГОСТ 7728

ГАЗОВЫЙ АНАЛИЗ


стали (углерод, сера)

Газоанализатор CS-600

ГОСТ 24018.7-24018.8

Газовый анализ. Никелевые сплавы и
стали (кислород, азот)

Газоанализатор ТС-600

ГОСТ 17745-90, МВИ 1.2.006-2009

Газовый анализ. Никелевые сплавы и
стали (водород)

Газоанализатор RHEN-600 ГОСТ 17745-90


(углерод, сера)

Газоанализатор CS-600

ГОСТ 24018.7-24018.8

Газовый анализ. Титановые сплавы
(кислород, азот)

Газоанализатор ТС-600

ГОСТ 28052-91, ГОСТ 17745-90

Газовый анализ. Титановые сплавы
(водород)

Спектрограф ИСП-51

ОСТ 1 90034-81, ММ 1.595-21-146-2002

Масс-спектрометрический анализ
шихтовых материалов на основах Ni,
Co, Cr, W, Mo (входной контроль
примеси)

Масс-спектрометр X
SERIES2

Масс-спектрометрический анализ.
Жаропрочные никелевые сплавы и
стали (микропримеси)

Масс-спектрометр X
SERIES2

МВИ 1.2.009-2009, МВИ 1.2.010-2009

Масс-спектрометрический анализ
легких сплавов на основах Al, Ti, Mg
(микропримеси)

Масс-спектрометр X
SERIES2

МВИ 1.2.009-2009, МВИ 1.2.010-2009

ЭМИССИОННЫЙ АНАЛИЗ

Эмиссионный анализ сплавов на
основах Al, Ti, Mg (+ макропримеси)

Оптико-эмиссионный
спектрометр Q8 Magellan

Создание аналитической программы
для количественного анализа легких
сплавов

Оптико-эмиссионный
спектрометр Q8 Magellan

ГОСТ 7727, ГОСТ 7728, ГОСТ 23902

Ростов-на-Дону 2014

Составители: Ю.В. Долгачев, В.Н.Пустовойт Оптико-эмиссионный спектральный анализ металлов. Методические указания к лабораторному практикуму / Ростов-на-Дону. Издательский центр ДГТУ. 2014. – 8 с.

Методические указания разработаны для использования студентами при выполнении лабораторного практикума по дисциплинам "Неразрушающие методы контроля материалов", "Физико-химия наноматериалов", "Нанотехнологии и наноматериалы” и предназначены для практического освоения теоретических представлений о строении и свойствах материалов, получения навыков анализа химического состава металлов и сплавов, .

Печатается по решению методической комиссии

факультета "Машиностроительные технологии и оборудование"

Научный редактор д.т.н., профессор Пустовойт В.Н. (ДГТУ)

Рецензент д.т.н., профессор Кужаров А.С. (ДГТУ)

 Издательский центр ДГТУ, 2014

Оптико-эмиссионный спектральный анализ металлов

ЦЕЛЬ РАБОТЫ: ознакомиться с назначением, возможностями, принципом действия спектрального анализатора Magellan Q8 и произвести химический анализ металлического образца.

1. Основные теоретические представления

1.1. Назначение оптико-эмиссионого спектрального анализа

Сегодня анализ химического состава нашел широкое применение во многих отраслях народного хозяйства. Качество, надежность, долговечность изделия в большой степени зависят от состава использованного сплава. Малейшее отклонение от заданного химического состава может привести к негативному изменению свойств. Особая опасность заключается в том, что данное отклонение может быть визуально незаметным и как следствие неопределимым без специальных приборов. Человеческие органы чувств не дают возможности проанализировать такие параметры металла, как его состав или марку используемого сплава. Одним из приборов позволяющим получить необходимую информацию о химическом составе сплава является оптико-эмиссионный спектрометр.

Оптический эмиссионный спектрометр используетсядля измерения массовой доли химических элементов в металлах и сплавах и применяется в аналитических лабораториях промышленных предприятий, в цехах для быстрой сортировки и идентификации металлов и сплавов, а также для анализа больших конструкций без нарушения их целостности.

1.2 Принцип действия оптико-эмиссионного анализатора

Принцип действия спектрометра основан на измерении интенсивности излучения на определенной длине волны спектра эмиссионного излучения атомов анализируемых элементов. Излучение возбуждается искровым разрядом между вспомогательным электродом и анализируемым металлическим образцом. В процессе анализа аргон обтекает исследуемый объект, делая его более заметным для изучения. Эмиссионный спектрометр фиксирует интенсивность излучения и на основе получаемых данных анализирует состав металла. Содержание элементов в образце определяется по градуировочным зависимостям между интенсивностью эмиссионного излучения и содержанием элемента в образце.

Спектрометр состоит из источника возбуждения спектра, оптической системы и автоматизированной системы управления и регистрации на базе IBM-совместимого компьютера.

Искровой источник возбуждения спектра предназначен для возбуждения эмиссионного светового потока от искры между образцом и электродом. Спектральный состав света определяется химическим составом исследуемой пробы.

В настоящее время наиболее оптимальной компоновкой оптической системы считается исполнение по схеме Пашена-Рунге (рис. 1).

Рис. 1 Оптическая система по схеме Пашена-Рунге

Когда возбужденные с помощью тлеющего разряда атомы переходят на более низкую орбиту, они излучают свет. Каждая излученная длина волны является характерной для каждого атома испустившего ее. Свет фокусируется на входной щели спектрометра и расщепляется на вогнутой голографической решетке в соответствии с длинами волн. После этого через точно установление выходные щели свет попадает на соответствующий элементу фотоумножитель.

Для обеспечения хорошей прозрачности оптическая камера должна быть вакуумирована. Кроме этого система должна быть независимой от внешних условий (температуры и давления воздуха). В настоящее время стационарные оптические спектрометры термостабилизированы с точностью до десятых долей градуса.

Управление процессом измерения и обработки выходной информации осуществляется от встроенного IBM-совместимого компьютера с помощью специального программного комплекса. По программе осуществляется настройка прибора, построение градуировочных зависимостей на основе анализа стандартных образцов, оптимизация его параметров, управление режимами спектрометра, обработка, сохранение и печать результатов измерения.

1.3 Установка Magellan Q8

Qantron Magellan (Magellan Q8) - оптико-эмиссионный анализатор с вакуумной оптикой фирмы Bruker (рис. 2). Позволяет определять химический состав сплавов на основе железа (стали и чугуны), меди (бронзы, латуни и др.) алюминия (дуралюмины и др.). Установка оснащена датчиками, определяющими процентное количество таких элементов, как углерод, азот, фосфор, сера, ванадий, вольфрам, кремний, марганец, хром, молибден, никель, алюминий, кобальт, медь, ниобий, титан, олово, бор, железо, цинк, олово, бериллий, магний, свинец.

Калибровка установки осуществляется с помощью калибровочных образцов различных сталей, чугунов, бронзы, алюминиевых сплавов. Точность определения химического состава сплавов составляет до сотых долей процента.

Рис. 2. Установка Magellan Q8

При работе с металлами нередко возникают вполне обоснованные сомнения : соответствует ли металл деталей тому, что указан в конструкторской документации. На любом производстве, как правило, применяют ограниченный ассортимент сталей и сплавов, но острой проблемой остается перепутывание марок даже при хорошо налаженном входном контроле. Это и недобросовестность поставщика, когда в одной партии попадаются прутки различных марок, что невозможно определить при входном контроле, перепутывание при выдаче заготовок в производство и отсутствие производственной дисциплины рабочих , которые, чтобы скрыть свой брак, берут любую подвернувшуюся заготовку. В ряде случаев сомнения возникают уже тогда, когда узел собран и подтвердить марку известными способами (спектральным , химическим , рентгенофлуоресцентным ) просто невозможно.

Кроме того, все чаще выпуск бракованной продукции возникает из-за перепутывания металлов при его покупке (недобросовестность поставщика) и при отсутствии входного контроля металлов. В итоге страдает качество заготовок и качество деталей. В ряде случаев сомнения возникают тогда, когда узел уже собран, и подтвердить (идентифицировать) марку металла какой-либо ответственной детали в нем известными методами (спектральным или химическим) не представляется возможным. Также прибор позволяет проводить анализ даже очень мелких деталей. Для этого необходимо расположить их на токопроводящей подложке. Возможно определение пробы золотых изделий.

Можно привести множество примеров, когда на термообработку попадали детали, заданную твердость которых невозможно было получить из-за того, что вместо стали, например, 40Х13 часть из них была изготовлена из 12Х8Н10Т. А как разбраковать несколько тысяч гаек, часть которых случайно была изготовлена из 40Х, а не из 30ХГСА, как того требовалось по конструкторской документации? Или как узнать на полностью готовой печатной плате марку примененного припоя, или каким припоем облужены выводы микросхем? Как подтвердить марку проволоки сварочного электрода?

С этими задачами легко справляется термоэлектрический анализатор «ТАМИС».

Методы анализа и определения (детектирования) металлов и сплавов

Для контроля марок металлов и сплавов используют стандартные методы:

  • химический анализ металлов

    Данный метод позволяет проанализировать химический состав металла с высокой точностью. На данный момент это единственный метод анализа, позволяющий достоверно определить процентное содержание углерода в сталях.

    Для проведения химического анализа стали по углероду стружку исследуемого металла сжигают в водородной среде и анализируют состав получившегося газа фотоколлометрическим методом. Для точности измерения проводят три параллельных пробы. Для определения других элементов используют весовой способ.

    Состав металлов весовым методом определяется путем его перевода в раствор (химическое растворение в растворах кислот, воде). Затем соединение необходимого металла переводится в осадок добавлением соли или щелочи. Далее осадок прокаливается до постоянного веса, а содержание металлов определяется взвешиванием на аналитических весах и пересчетом. Метод дает наиболее точные значения состава металла, но требует больших затрат времени.

    При электрохимическом методе после перевода пробы в водный раствор содержание металла определяется различными электрохимическими методами — полярографическим, кулонометрическим и другими, а также сочетанием с титрованием.

    Эти методы позволяют провести химический анализ металлов в широком диапазоне концентраций с удовлетворительной точностью, но отличаются высокой трудоемкостью, требуют лабораторию и квалифицированный персонал.

  • спектральный анализ металлов

    Достаточно разнообразна группа спектральных методов определения содержания металлов. В нее входят, в частности, различные методы определения содержания металлов путем проведения анализа характеристических спектров электромагнитного излучения атомов — атомный эмиссионный анализ, атомный абсорбционный анализ, спектрофотометрия, масс-спектрометрия, рентгеноспектральный анализ.

    Наиболее широко применяемый в промышленности метод. На современном оборудовании процесс исследования состава металла занимает считанные минуты. При анализе металла данным методом определение количественного содержания углерода в сталях неточно .

    Для спектрального анализа требуются квалифицированные специалисты и дорогостоящее оборудование — спектрометр (порядка 4 млн. руб.). При анализе металла на поверхности остаются следы температурного воздействия, что приводит к нарушению геометрии исследуемой металлической детали.

  • рентгенофлуоресцентный анализ металлов

    Относится к неразрушающим методам. Позволяет определять практически весь элементный состав металлов, за исключением точного содержания углерода в сталях. Процесс определения занимает не более 1 минуты.

    Для проведения рентгенофлуоресцентного анализа требуется достаточно большая площадь поверхности. Измерение малых деталей невозможно. Требуется дорогостоящее оборудование (более 1,5 млн. руб.) и хорошо подготовленные специалисты.

Термоэлектрический анализатор металлов и сплавов ТАМИС

Богатый опыт работы по анализу причин брака на различных производствах, анализу выхода из строя изделий различной сложности и назначения привел к необходимости создания недорогого , простого в обращении именно в производственных условиях анализатора металлов и сплавов (включая цветные).

Эффект Зеебека

В основе работы прибора лежит эффект Зеебека, когда при нагревании соединения двух разнородных металлов возникает термоэдс, величина которой зависит от химического состава исследуемых металлов. Термоэдс легко поддается надежным измерениям и широко используется в промышленности в термопарах для измерения температур при различных технологических процессах читать про эффект .

Преимущества термоэлектрического анализатора металлов и сплавов

При разработке анализатора металлов основное внимание было уделено:

  • надежности
  • достоверности получаемых результатов
  • простоте в эксплуатации

Учитывался тот факт, что прибором могут пользоваться школьники, кладовщицы, рабочие, мастера.

  • Широкий спектр применения прибора:
    • на производственных участках металлообрабатывающих производств (ОТК, материальных кладовых, при входном контроле и пр.)
    • на сборочных участках для контроля металлов в собранных узлах, определения видов покрытия выводов радиоэлементов, марок припоев
    • в термических участках
    • в ювелирных мастерских
    • в мастерских высших учебных заведений и школьных мастерских
    • в исследовательских лабораториях
    • в Центральных заводских лабораториях
    • в лабораториях входного контроля металлов
    • в следственных отделах для оперативного контроля изъятых изделий из драгоценных металлов
    • при проведении лабораторных работ по металловедению в учебных заведениях
  • Простота применения
  • Компактность
  • Не требует квалифицированного персонала
  • Оперативность измерения

Методика определения металлов анализатором ТАМИС

Анализатор способен различить более 40 различных марок сталей и цветных металлов. Для получения достоверных результатов анализа необходимо строго следовать методике проведения анализа, которая описана .